
Clemson University
College of Engineering and Science

Control and Robotics (CRB) Technical Report

Number: CU/CRB/3/2/06/#1
Title: Neural Network Grasping Controller for Continuum

Robots
Authors: D. Braganza, D. M. Dawson, I. D. Walker and N. Nath

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Neural Network Grasping Controller for Continuum Robots

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Clemson University,Department of Electrical & Computer
Engineering,Clemson,SC,29634-0915

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Neural Network Grasping Controller for Continuum Robots

D. Braganza, D. M. Dawson, I. D. Walker and N. Nath

Abstract— Continuum or hyper-redundant robots are robots
which exhibit behavior similar to biological trunks, tentacles
and snakes. Unlike traditional robots, continuum robot ma-
nipulators do not have rigid joints, hence the manipulators
are compliant, extremely dexterous, and capable of dynamic,
adaptive manipulation in unstructured environments; however,
the development of high-performance control algorithms for
these manipulators is a challenging problem. In this paper,
we present an approach to whole arm grasping control for
continuum robots. The grasping controller is developed in two
stages; high level path planning for the grasping objective, and
a low level joint controller using a neural network feedforward
component to compensate for dynamic uncertainties. These
techniques are used to enable whole arm grasping without
using contact force measurements and without using a dynamic
model of the continuum robot. Experimental results using
the OCTARM, a soft continuum robotic manipulator are
included to illustrate the efficacy of the proposed low level
joint controller.

I. INTRODUCTION

Continuum or hyper-redundant robot manipulators are

manipulators which exhibit behavior similar to biological

trunks, tentacles and snakes [1], [2]. Unlike traditional rigid

link robots, continuum robot manipulators do not have rigid

joints, also the increased number of degrees of freedom

give the manipulator some very useful properties. The ma-

nipulators are flexible, compliant, extremely dexterous and

capable of dynamic adaptive manipulation in unstructured

environments. Due to these inherent properties of soft contin-

uum robot manipulators, they are uniquely suited to perform

whole arm grasping. Whole arm manipulation [3] is the term

used to describe the ability of the manipulator to grasp an

object using its entire body, as compared to fingertip grasping

performed by traditional robotic grippers and hands. Whole

arm grasping is performed by allowing the robot manipulator

to make contact with the object in a snake or tentacle-like

manner, using portions of the manipulator itself to wrap

around the object and grasp it. Several researchers including

[3], [4] and others have pointed out the advantages of whole

arm grasping, some of which are, increased load capacity

and the ability to grasp objects of various dimensions. These

capabilities can be used in many applications, including

search and rescue, underwater and space exploration. The

grasping techniques presented in most of the previous work

requires either that the geometry of the object and the

This work is supported in part by a DOC Grant, an ARO Automotive
Center Grant, a DOE Contract, a Honda Corporation Grant and a DARPA
Contract.

The authors are with the Department of Electrical and Com-

puter Engineering, Clemson University, Clemson, SC 29634-0915.

dbragan@clemson.edu

constraint forces to be known a priori [5], or that the contact

forces be measurable using some type of force sensor [6],

[7].

The development of high performance model based con-

trol algorithms for continuum manipulators is a challenging

problem for several reasons. For example, since the arms

must be modeled as continuous curves, the kinematic and

dynamic models are difficult to derive. Also the manipulator

body is soft and flexible which makes accurate control

difficult. Several researchers have proposed kinematic control

techniques for continuum manipulators, for example see

[8], and the references therein. A set-point controller for a

variable length manipulator based on an artificial potential

function method which does not require the dynamic model

was presented in [9]. Various other techniques have been

suggested for tracking control of continuum manipulators.

In [10], sliding mode and impedance control techniques

for hyper-flexible manipulators were presented. In [11], the

authors present a trajectory tracking control of snake robots

based on its dynamic model. In [12], a fuzzy control method

was presented. Shape tracking control, where the manipulator

follows a desired shape prescribed by a time-varying spatial

curve was considered by [13]. All of the aforementioned

techniques but [9] require the dynamic model of the manip-

ulator be known.

In this paper, a path planner is presented for whole arm

grasping which does not require the constraint forces to be

known a priori and also eliminates the requirement for con-

tact force sensing. The path planner is then fused with a low

level joint controller that uses a neural network feedforward

component to compensate for the unknown dynamics of the

continuum robot manipulator. Both the planner and controller

are designed such that force measurements are not required.

The design of the neural network is based on the augmented

back propagation algorithm [14]. Specifically, the neural

network is used to compensate for the nonlinear uncertain

dynamics of the continuum robot manipulator while a non-

linear feedback controller [15] is used to provide semi-global

asymptotic tracking. The advantage of the proposed control

scheme compared to previous works is that semi-global

asymptotic tracking can be proved, whereas most previous

results for neural network control of robot manipulators [16]–

[18] only prove ultimate boundedness of the tracking error.

The remainder of the paper is organized as follows,

in section II, the kinematic and dynamic models for the

continuum robot are presented. In section III, the high level

path planning for whole arm grasping is presented. In section

IV, the low level joint control objective is defined, and the

design of the low level controller with the neural network

feedforward component is presented. To demonstrate the

performance of the proposed controller with the neural

network feedforward component, the controller was tested

on the OCTARM, a soft continuum robotic manipulator

for a sinusoidal trajectory. Experimental results both with

and without the neural network feedforward component are

presented in section V to illustrate the effectiveness of the

proposed control strategy.

II. SYSTEM MODELS

A. Kinematic Model

The forward kinematic model for an n-segment continuum

robot can be developed as follows

xn = fn(q) (1)

where xn(t) ∈ R
p represents the robot end-effector’s task-

space vector, q(t) ∈ Rn denotes the joint position, and

fn(q) ∈ Rp denotes the forward kinematics of the robot.

Note for continuum robots, q(t) is a vector of curvatures and

extensions of the robot sections, for more information see

[19]. The velocity kinematics for the robot can be developed

as follows

ẋn = Jn(q)q̇(t) (2)

where ẋn(t) ∈ Rp represents the task-space velocity, q̇(t) ∈

Rn denotes the joint velocity, and Jn(q) ,
∂fn(q)

∂q
∈ Rp×n

denotes the robot Jacobian. Recently in [19], the authors have

developed a general method for determining the kinematics

of continuum robots. This approach enables the Cartesian

position and orientation of the end effector and the robot

Jacobian to be computed in real-time.

Assumption 1: The kinematic model for the continuum

robot is known, and all kinematic singularities are avoided

such that J(q) is always non-singular.

B. Dynamic Model

From a review of the literature, it is evident that there

have been few published results pertaining to the dynamic

modeling of continuum robot arms. Some of the dynamic

models which have been developed include [20], [21], where

the planar model of the manipulator was considered, and

[22], where the authors develop a 3D dynamic model for

a constant length, non-extensible continuum manipulator. As

such, the complete dynamic modeling of variable length con-

tinuum robot arms remains an open research area. In [22], the

developed dynamic model was shown to satisfy the familiar

property that the continuum manipulators inertia matrix is

symmetric and positive definite. In this development, we will

assume that the dynamic model of a 9-joint continuum robot

manipulator can be described by the following expression

M(q)q̈ + N(q, q̇) = u (3)

where M(q) ∈ R9×9 represents the inertia matrix, N(q, q̇) ∈
R9 represents the remaining dynamic terms, u(t) ∈ R9

represents the input torque vector, and q(t), q̇(t), q̈(t) ∈
R9 represent the joint position, velocity and acceleration

respectively.

The subsequent development is based on the following

assumptions

Assumption 2: The manipulators joint position q(t) and

joint velocity q̇(t) are measurable.

Assumption 3: The dynamic terms denoted by M(q)
and N(q, q̇) are unknown nonlinear functions of q(t) and

q̇(t) which are second order differentiable and satisfy the

following properties

M(·), Ṁ(·), M̈(·) ∈ L∞ if q(t), q̇(t), q̈(t) ∈ L∞ (4)

N(·), Ṅ(·), N̈(·) ∈ L∞ if q(t), q̇(t), q̈(t),
...
q (t) ∈ L∞. (5)

Assumption 4: The inertia matrix M(q) is symmetric and

positive-definite, and satisfies the following inequalities

m1 ‖ξ‖
2 ≤ ξT M(q)ξ ≤ m2 ‖ξ‖

2 ∀ξ ∈ R
9 (6)

where m1, m2 ∈ R are positive constants, and ‖·‖ denotes

the standard Euclidean norm.

III. HIGH LEVEL PATH PLANNING

Whole arm grasping can be achieved by integrating the

path planner and the controller such that two tasks, robot

end-effector positioning and robot body self-motion position-

ing, are accomplished simultaneously [23]. The end-effector

positioning controller forces the end-effector to follow a path

around the object which in turn, forces the robot’s body

to wrap itself around the object to be grasped. The body

self-motion positioning controller “repels” the body of the

manipulator away from the object while the end-effector

moves around the object.

A. Kinematic Planning

To facilitate the kinematic planning, the pseudo-inverse

of the manipulator Jacobian denoted by J+
n (q) ∈ Rn×p is

defined as follows

J+
n , JT

n

(

JnJT
n

)−1
(7)

where J+
n (q) satisfies the following equality

JnJ+
n = Ip (8)

where Ip ∈ Rp×p is the standard identity matrix. As shown

in [24], the pseudo-inverse defined by (7) satisfies the Moore-

Penrose conditions given below

JnJ+
n Jn = Jn J+

n Jn J+
n = J+

n

(J+
n Jn)

T
= J+

n Jn (JnJ+
n)

T
= JnJ+

n .
(9)

In addition to the above properties, the matrix (In − J+
n Jn)

satisfies the following useful properties

(In − J+
n Jn) (In − J+

n Jn) = In − J+
n Jn

(In − J+
n Jn)

T
= (In − J+

n Jn)
Jn (In − J+

n Jn) = 0
(In − J+

n Jn)J+
n = 0

(10)

where In ∈ Rn×n is the standard identity matrix.

Based on (2) and the above properties the kinematic

planner, denoted by U(t) ∈ Rn, that enables the whole arm

grasping objective is designed as follows

U(t) , J+
n Ue +

(

In − J+
n Jn

)

Um (11)

where Ue(t) ∈ R
p is the end-effector positioning controller,

and Um(t) ∈ Rn is the robot body self-motion controller.

The objective of the end-effector positioning controller is

to force the end-effector to track a desired trajectory en-

compassing the surface of the object to be grasped. We will

utilize a task space velocity field, [25], for the end-effector

positioning because it more effectively penalizes the end-

effector for leaving the contour and does not exhibit the

radial reduction phenomenon [25], [26]. For example, when

the object to be grasped is circular, the velocity field can

be designed to generate a desired trajectory which forces the

end-effector to spiral inwards, toward, and around the surface

of the object.

The end-effector positioning controller is designed [23] as

Ue , ϑ (xn) + Kee + kn

∥

∥

∥

∥

∂V (xd)

∂xd

∥

∥

∥

∥

2

ρ2 (xn, xd) e (12)

where ϑ (xn) ∈ Rp is a task-space velocity field which

encircles the object to be grasped, Ke ∈ R
p×p is a positive

definite diagonal gain matrix, kn ∈ R+ is a scalar gain

parameter, e(t) ∈ Rp is the error between the desired and

actual task space position and is defined as follows

e , xd − xn, (13)

where xd (t) ∈ Rp is the desired task-space position, and

xn (t) was introduced in (1). In (12), V (xd) ∈ R is a first

order differentiable, nonnegative function, and ρ (·) ∈ R is

a known positive function that is assumed to be bounded

provided xn(t) and xd(t) are bounded. The desired task

space velocity trajectory is defined as

ẋd (t) , ϑ (xn) (14)

where ϑ (xn) is the velocity field generated by the task-

space position xn(t). Refer to [23] for more details of this

development.

The objective of the body self-motion positioning con-

troller is to “repel” the end-effector and body of the ma-

nipulator away from the object to be grasped, while the end-

effector moves around the object. This repulsion-like prop-

erty facilitates obstacle avoidance and removes the “slack”

from the body of the manipulator as the robot moves into

the grasping position. Following this line of reasoning, the

body self-motion positioning controller Um(t) ∈ Rn of (11),

is designed [23] as follows

Um , −km

[

Js

(

In − J+
n Jn

)]T
ya (15)

where km ∈ R+ is a control gain, Js ∈ R1×n is a Jacobian-

like vector, In ∈ Rn×n is the standard identity matrix, and

ya (t) ∈ R is an auxiliary scalar signal encoding geometric

information about the object’s surface and it’s relationship

to the manipulator joint positions. This type of geometric

encoding keeps the body of the manipulator away from the

object during the initial phases of grasping.

For whole arm grasping, a specific auxiliary signal ya (t)
is designed as follows

ya ,

m
∑

i=1

hai (xi) (16)

where m is the number of sections of the redundant manipu-

lator, xi =
[

x̄i1 x̄i2 . . . x̄ip

]T
∈ Rp is the Euclidean-

space coordinate for the ith section, and hai (xi) ∈ R is the

repulsion function for the ith section that encodes geometric

information about the surface of the object with respect to

the ith section’s Euclidean position. The repulsion function

hai (xi) is defined as follows

hai (xi) = khi exp
(

−αiβ
2
i (xi)

)

, ∀ i = 1, .., m (17)

where khi, αi ∈ R
+ are constants, and βi (xi) ∈ R is

the section specific geometric function. The function βi (xi)
should be designed to be positive when the manipulator is not

touching the object. For example, given a spherical object in

three dimensional Euclidean-space, βi (xi) could be defined

as follows

βi (xi) , (x̄i1 − x̄c1)
2 + (x̄i2 − x̄c2)

2 + (x̄i3 − x̄c3)
2 − r2

o

where x̄c1, x̄c2, x̄c3, ro ∈ R are the Euclidean coordinates of

the center of the spherical object and its radius, respectively.

For more details of this development refer to [23].

B. Fusing the Planner with the Controller

To fuse the high level path planner with the low level joint

controller, we use a desired trajectory generator which en-

sures that the desired trajectories for the manipulator’s joints

are bounded. The structure of the desired trajectory generator

is motivated by the choice of the low level controller (25),

which requires the desired trajectory be bounded up to its

fourth derivative.

To ensure that the desired joint space velocity trajectory

is bounded, we could use the following expression

q̇d (t) , sat (U(t)) (18)

where U(t) was defined in (11), q̇d(t) ∈ R9 are the

desired joint velocities, sat(ξ) ∈ Rn is defined as sat(ξ) =
[sat(ξ1), · · · , sat(ξn)]

T
∀ ξ = [ξ1, · · · , ξn]

T
∈ R

n where

sat(ξi) ∈ R ∀ i = 1, · · · , n is the following saturation

function

sat(ξi) =

−ξmin if ξi ≤ −ξmin

ξi if ξi > −ξmin or ξi < ξmax

ξmax if ξi ≥ ξmax

where ξmin, ξmax ∈ R
+ are constants. If (18) is used to

generate the desired trajectory, we cannot prove that the

desired joint trajectory, qd(t) ∈ R9 is bounded, so we could

use the following filtering operation

qd (s) ,
1

(

s
ǫ

+ 1
)sat (U(t)) (19)

where s ∈ C is the standard Laplace variable, and ǫ ∈ R
+

is a small constant. However, in the case of (19), we cannot

prove that the higher order derivatives of qd(t) will remain

bounded. So the desired trajectory generated for qd(t) is

modified further in the final form given by

qd (s) ,
1

(

s
ǫ

+ 1
) (

s
κ

+ 1
)3

sat (U(t)) (20)

where κ ∈ R+ is large constant. From (20), it is clear that

qd (t) , q̇d (t) , q̈d (t) ,
...
q d (t) , and

....
q d (t) ∈ L∞.

IV. LOW LEVEL JOINT CONTROL OBJECTIVE

The low level control objective is to design a continuous

controller which provides asymptotic tracking of the manip-

ulator joint position and the desired trajectory in the sense

that

q(t) → qd(t) as t → ∞. (21)

To quantify the control objective, an error signal, denoted by

e1(t) ∈ R9, is defined as follows

e1 , qd − q. (22)

Furthermore, an auxiliary tracking error signal e2(t) ∈ R9 is

defined as follows

e2 , ė1 + λ1e1 (23)

where λ1 ∈ R+ is a control gain. For the closed loop error

system development, we define a filtered tracking error signal

r(t) ∈ R9 as follows

r , ė2 + λ2e2 (24)

where λ2 ∈ R+ is a control gain.

The dynamic model of the continuum robot is a nonlinear

uncertain system; hence, the strategy developed by Xian et.

al. [15] can be used for the joint level controller. This con-

troller is chosen because it is continuous, it does not require

the dynamic model of the manipulator or contact forces to be

known and yet it provides semi-global asymptotic tracking.

Specifically, the control objective described in (21) can be

met with the following controller [15]

u(t) , (Ks + I)e2(t) − (Ks + I)e2(t0) +

∫ t

t0

f̂(τ)dτ

+

∫ t

t0

(λ2(Ks + I)e2(τ) + βsgn(e2(τ))) dτ(25)

where u(t) ∈ R
9 is the control input defined in (3), λ2 ∈

R+ is a control gain Ks, β ∈ R9×9 are positive definite

diagonal control gain matrices, f̂(t) ∈ R9 is the neural

network feedforward component and sgn(·) : R9 7→ R9

denotes the vector signum function defined as sgn(ξ) =
[sgn(ξ1), · · · , sgn(ξ9)]

T ∀ ξ = [ξ1, · · · , ξ9]
T ∈ R9. The

controller presented in (25), provides semi-global asymp-

totic convergence of the joint position tracking error, (i.e.

‖e1(t)‖ → 0 as t → ∞). For a detailed analysis of the

controller the reader is referred to [15].

Remark 1: The design of the neural network feedforward

component, f̂(t), is presented in the subsequent section. The

only restriction imposed on the neural network component

by the selection of the controller (25) is that f̂(t) ∈ L∞.

A. Neural Network Feedforward Design

The neural network feedforward component f̂(t) ∈ R9 is

computed using a two layer network with 15 neurons1. The

1The number of neurons required for the system was determined exper-
imentally by noting the performance achievable with a given number of
neurons and increasing the number of neurons until satisfactory tracking
performance was obtained.

weights are computed using a modified version of the back

propagation algorithm presented in [14]. Given Remark 1,

an important consideration regarding the design of the neural

network feedforward component is that the output from the

neural network must always be bounded (i.e. f̂(t) ∈ L∞). To

this end the neural network component is defined as follows

f̂ = ŴT σ̄
(

V̂ T x
)

. (26)

where Ŵ (t) ∈ R15×9 and V̂ (t) ∈ R37×15 are estimated

weight matrices, and x(t) ∈ R37 is the input vector to the

neural network which is selected as

x =
[

1, qT
d , q̇T

d , q̈T
d ,

...
q T

d

]T
(27)

where qd(t), q̇d(t), q̈d(t),
...
q d(t) were previously defined. The

vector activation function σ̄(·) ∈ R15 7→ R15 is defined as

follows

σ̄(ω) = [σ(ω1), σ(ω2), · · · , σ(ω15)]
T

(28)

where ω = [ω1, ω2, · · · , ω15]
T

and σ(s) : R 7→ R is the

sigmoid activation function defined as

σ(s) =
1

1 + exp(−s)
. (29)

The gradient of the vector activation function, denoted by

σ̄
′

(·) ∈ R15×15 can be expressed in closed form as follows,

[14]

σ̄(ω)
′

= diag{σ̄(ω)} [I − diag{σ̄(ω)}] . (30)

If we were to design the weight update laws according to

the augmented backpropagation algorithm [14], we would

use the following update rule

˙̂
W = −κF ‖r‖ Ŵ − F σ̄

′

(·)V̂ T xrT + F σ̄(·)rT

˙̂
V = −κG ‖r‖ Ŵ + Gx

(

σ̄
′T (·)Ŵ r

)T

where κ ∈ R+ is selected to be a small constant, F ∈
R15×15, G ∈ R37×37 are positive definite gain matrices,

x(t) is the input vector defined in (27), and r(t) is the

filtered tracking error signal defined in (24). Here, the filtered

tracking error signal r(t) is required in the update laws

which requires the measurement of the manipulator joint

acceleration, and hence, this is undesirable. To ensure that

the weights generated from this law are bounded, and that

joint acceleration measurements are not required, we redefine

the update laws as follows

˙̂
W = −αwŴ + γ1σ̄

(

V̂ T x
)

sat (e2 + ζ)
T

(31)

˙̂
V = −αvV̂ + γ2x

[

σ̄
′

(

V̂ T x
)

Ŵ sat (e2 + ζ)
]T

(32)

where αv, αw ∈ R+ are small constants, γ1, γ2 ∈ R+ are

control gains which effect the learning speed, the function

sat(ξ) : R15 7→ R15 was previously defined, and the

auxiliary signal ζ(t) ∈ R9 is a surrogate (i.e. a dirty

derivative operation) for the signal ė2(t) which is defined

as follows

ζ =
1

ε
(e2 − η) (33)

where ε ∈ R
+ is a small constant, and the signal η(t) ∈ R

9

is updated according to the following expression

η̇ =
1

ε
(e2 − η). (34)

From equations (26)-(34) and the fact that the input vector

to the neural network is bounded, it is easy to show that the

weight matrices Ŵ (t) and V̂ (t) are bounded, and hence, the

output from the neural network, f̂(t), is bounded.

V. EXPERIMENTAL RESULTS

Fig. 1: The OCTARM V.2 robotic manipulator.

To verify the performance of the controller with the

neural network feedforward component, the controller was

implemented on the OCTARM continuum robot manipulator.

In this section, we first provide a description of the OCTARM

continuum robot manipulator, then experimental results are

provided which demonstrate the effectiveness of the neu-

ral network feedforward tracking controller. Research work

for the OCTARM robotic manipulators is being conducted

for the Soft Robot Manipulators and Manipulations project

supported by the DARPA BIODYNOTICS program. This

work is a multidisciplinary and multi-institutional effort, the

reader is referred to [2], [27], [28], for more details of the

project. The team members at Penn State University perform

the mechanical design and construction of the arms while

the team at Clemson University develops the electronics,

kinematics and control systems.

A. Description of the OCTARM Manipulator

The OACTARM manipulator [28], [29] is a biologically

inspired soft robot manipulator resembling a trunk or ten-

tacle. The OCTARM is significantly more versatile and

adaptable than conventional robotic manipulators, capable

of adaptive and dynamic manipulation in unstructured en-

vironments. To provide the desired dexterity the OCTARM

is constructed with high strain extensor air muscles called

McKibben actuators, which are constructed by covering latex

tubing with a double helical weave, plastic mesh sheath [29].

These actuators provide the large strength to weight ratio and

strain required for soft robot manipulators.

The OCTARM is divided into three sections with each

section capable of two axis bending and extension allowing

nine total degrees of freedom. The arm is pneumatically

actuated with a maximum pressure of 130 Psi through nine

pressure control valves. To provide two-axis bending and ex-

tension, three control channels are selected for each section.

Six actuators are used in each section one and two and three

actuators are used in section three. The six actuator design

has two actuators for each control channel and results in

actuators located at a larger radius, corresponding to higher

stiffness and load capacity. Three closely-spaced actuators

provide high curvature for the distal section. To provide

torsional motion, the OCTARM has been fitted with a D.C.

motor at the base. In OCTARM V.2 (see Figure 1), the D.C.

motor is directly coupled to the end plate of the base section

through a reduction gear mechanism. This arrangement of

the base motor limits the maximum rotation to 180 degrees.

For closed loop control of the OCTARM manipulator

accurate shape sensing is essential. The shape of the manip-

ulator can be inferred by measuring the length of each of the

actuators on the OCTARM. To measure the length of each

actuator, three string encoders are used. Figure 1 shows the

three section OCTARM V.2 with the string encoders attached

to the base of section 1 and optical encoders located at the

end plates of section 1 and 2. The cables from each of the

string encoders run the entire length of the arm through the

optical encoders at the lower sections, as seen in Figure 1.

This configuration enables the length of each of the actuators

on the OCTARM manipulator to be determined. To obtain

actuator velocity measurements, a variable structure velocity

observer is utilized (see [15]).

The design of these manipulators is constantly being

refined to provide stronger actuators, additional sensory

information, newer capabilities and eliminate some of the

problems with the previous designs. With the OCTARM V.2,

due to the arrangement of the string encoders at the base

section and the optical encoders at the end plates of the

distal sections, there were a number of protrusions on the

surface of the arm limiting its grasping capabilities. Also

the air tubes for the distal sections were coiled on the outer

surface of the arm, again limiting its grasping capabilities.

Another problem faced with OCTARM V.2 was slippage of

the string encoder cable at the distal sections which caused a

loss of calibration. To address these issues, a new prototype

of the arm has been developed called OCTARM VI (see

Figure 2). OCTARM VI has also been fitted with a rotary

union which has an electrical slip ring with 36 electrical

connections and also provides 12 independent passages for

pneumatic lines. This new rotary union enables continuous

rotation of the base of the manipulator. Shape sensing with

the string encoders has also been reconfigured in OCTARM

VI. There are now nine string encoders arranged around the

base section. New eyelets for guiding the encoder cables

have also been developed to reduce friction. In addition, the

electrical wiring for sensors and the air tubes for pneumatic

channels have been enclosed inside the actuators, providing

a clean exterior surface of the arm for grasping.

The robot control system consists of commercial off-the-

shelf Pentium III EBX form-factor Single Board Computer

(SBC) with two ServoToGo data acquisition boards which

provide analog and digital I/O. The computer runs the

QNX Neutrino real-time Operating System and QMotor [30]

the in-house developed hard real-time control software for

implementation of the control algorithms. Data acquisition

and control implementation were performed at a frequency

of 500 Hz.

B. Joint Trajectory Tracking Experiment Description

Preliminary experimental results were obtained using the

OCTARM V.2 to demonstrate the effectiveness of the neural

network feedforward control. To test the low level con-

troller with the neural network component given in (25), a

sinusoidal desired trajectory was selected for the actuator

lengths. The three actuators on a section are 120 degrees

apart mechanically, so the desired trajectory for each actuator

in a section is shifted 120 degrees in phase from the trajectory

of the previous actuator in that section. The trajectory for

section i, where i = 1, 2, 3 represents the three sections of

the OCTARM, was selected as follows

qdik = lmini
+ (1 − exp(−0.5t))

[

l0 + 2sin

(

0.0625πt +
2

3
πk

)]

∀k = 1, 2, 3

where qdi = [qdi1, qdi2, qdi3] ∈ R3 represents the desired

trajectory for the actuators on section i, lmini
∈ R represents

the minimum lengths of the actuators on section i and

l0 = 7 [cm] is the initial extension of the actuators on

section i. The initial extension was selected to keep the

operating pressure close to the center of its operational range.

The minimum and maximum lengths of the sections which

correspond to the minimum pressure (0 psi) and maximum

pressure (130 psi) respectively are physical limitations of the

actuators and were found to be lmin1
= 22.9 [cm], lmin2

=
22.4 [cm], lmin3

= 27.9 [cm], lmax1
= 35.8 [cm], lmax2

=
37.1 [cm], lmax3

= 47.7 [cm].

The system gains which yielded satisfactory performance

were determined by trial and error and were as follows

Ks = diag{1, 1, 1, 1, 1, 1, 1, 1, 1},

β = diag{1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5},

λ1 = 1, λ2 = 1, γ1 = 10, γ2 = 500,

αv = 0.001, αw = 0.001, ε = 0.01.

There was no training period utilized to determine the initial

values for the weight matrices Ŵ (t) and V̂ (t), the matrices

were initialized to zero.

C. Analysis of Results

To test the effectiveness of the neural network feedforward

term, we compared the controller in (25) with a standard PID

controller and the controller given in (25) without the neural

network component. To provide a means to quantify the

performance of each controller, we compute the following

measures

Me ,

∫ t

t0

‖e1(τ)‖2
dτ (35)

Mu ,

∫ t

t0

‖u(τ)‖
2
dτ (36)

where Mu(t) is a measure of the energy expended by the

controller, and Me(t) is a measure of the magnitude of the

tracking error over the period of operation of the system.

TABLE I: Comparison of Energy Measures for Different

Controllers
PID u(t) without f̂(t) u(t) with f̂(t)

Me 2.8357× 103 256.2135 58.2223

Mu 1.3689× 106 2.0459 × 106 2.069× 106

The performance of the system was first tested without

the neural network component. The control gains for the

controller were adjusted till good performance was obtained.

Figures (3, 4, 5) show the actual and desired joint trajectories,

joint tracking error, and the input pressure for the controller

without the neural network component. Next, the neural

network feedforward was added to the controller, and the

neural network weight update law gains were adjusted till

best performance was obtained. Figures (6, 7, 8) show the

actual and desired joint trajectories, joint tracking error,

and the input pressure for the controller with the neural

network feedforward component. It can be seen from Figure

7 that the tracking error with the neural network feedforward

component settles out to ±0.5 [cm].

To compare the controller performance with and with-

out the neural network feedforward component, the energy

measures were computed for the two configurations. The

energy measures were also computed for a standard PID

controller, these results are presented to show the perfor-

mance improvement obtained by using the controller in (25).

Table I, shows a comparison of the performance for the three

controller configurations. It can clearly be seen from Table

I that improved tracking performance is achieved by adding

the neural network feedforward to the controller.

Fig. 2: OCTARM VI grasping a ball.

D. Grasping Experiment Description

The whole arm grasping experiment with the neural net-

work based joint controller will be conducted with OCTARM

VI in the upcoming months. Figure 2, shows the OCTARM

VI grasping a circular object. The object specific functions

for this planar application are defined as follows

βi (Xi) , (xi − xc)
2
+ (yi − yc)

2
− r2

o ∀ i = 1, .., 6 (37)

where Xc = [xc, yc]
T ∈ R

2 represents the co-ordinates of

the center of the object, and r0 ∈ R represents the object

radius. The task space variable for each of the three sections

and the mid-point of the three sections are Xi = [xi, yi]
T ∈

R2 ∀ i = 1, .., 6. The following task-space velocity field for

a planar, circular contour will be utilized [26]

Ẋd = ϑ(X6) = −2K(X6)f(X6)

[

(x6 − xc)
(y6 − yc)

]

+2c(X6)

[

−(y6 − yc)
(x6 − xc)

]

(38)

where Ẋd ∈ R2 represents the desired task space velocity

for the end-effector, X6 ∈ R2 represents the end-effector co-

ordinate, and the functions f(X6), K(X6), and c(X6) ∈ R

are defined as in [26].

VI. CONCLUSION

We have presented a neural network controller for grasping

control of a continuum robot manipulator. The feedforward

neural network was used to compensate for the uncertain

nonlinear dynamics of the continuum manipulator, while

the nonlinear controller provides semi-global asymptotic

convergence of the joint position tracking error. Experimental

results for the OCTARM soft robotic manipulator operating

along a sinusoidal trajectory were presented. A comparison

of the tracking performance, both with and without the neural

network feedforward component demonstrates the efficacy

of the proposed neural network feedforward estimation tech-

nique. Future work will consist of testing the whole arm

grasping controller with the neural network component on

OCTARM VI.

REFERENCES

[1] G. Robinson and J. B. C. Davies, “Continuum robots - a state of
the art,” in Proc. IEEE Int. Conf. Robot. Automat., Detroit, Michigan,
USA, 1999, pp. 2849–2854.

[2] I. D. Walker, D. M. Dawson, T. Flash, F. Grasso, R. Hanlon,
B. Hochner, W. Kier, C. Pagano, C. D. Rahn, and Q. Zhang, “Contin-
uum robot arms inspired by cephalopods,” in Proc. 2005 SPIE Conf.
Unmanned Ground Vehicle Technology IV, Orlando, Florida, USA,
Mar. 2005, pp. 303–314.

[3] K. Salisbury, “Whole arm manipulation,” in Proc. 4th Int. Symposium

Robotics Research, 1987, pp. 183–189.

[4] K. Mirza and D. E. Orin, “Force distribution for power grasp in the
digits system,” CSIM-IFToMM Symp, Theory and Practice of Robots

and Manipulators, 1990.

[5] P. Song, M. Yashima, and V. Kumar, “Dynamics and control of whole
arm grasps,” in Proc. IEEE Int. Conf. Robot. Automat., Seoul, Korea,
2001, pp. 2229–2234.

[6] F. Asano, Z. Luo, M. Yamakita, and S. Hosoe, “Dynamic modeling
and control for whole body manipulation,” in Proc. IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, Las Vegas, NV, 2003, pp.
3162–3167.

[7] R. Platt, A. H. Fagg, and R. A. Grupen, “Extending fingertip grasping
to whole body grasping,” in Proc. IEEE Int. Conf. Robot. Automat.,
Taipei, Taiwan, 2003, pp. 2677–2682.

[8] F. Matsuno and K. Suenga, “Control of redundant snake robot based
on kinematic model,” in Proc. 41st SICE Annual Conference, Osaka,
Japan, 2002, pp. 1481–1486.

[9] M. Ivanescu, N. Popescu, and D. Popescu, “A variable length tentacle
manipulator control system,” in Proc. IEEE Int. Conf. Robot. Automat.,
Barcelona, Spain, 2005, pp. 3285–3290.

[10] T. Suzuki, K. Shintani, and H. Mochiyama, “Control methods of hyper-
flexible manipulators using their dynamical features,” in Proc. 41st
SICE Annual Conference, Osaka, Japan, 2002, pp. 1511–1516.

[11] F. Matsuno and H. Sato, “Trajectory tracking control of snake robots
based on dynamic model,” in Proc. IEEE Int. Conf. Robot. Automat.,
Barcelona, Spain, 2005, pp. 3040–3045.

[12] M. Ivanescu, “Position dynamic control for a tentacle manipulator,”
in Proc. IEEE Int. Conf. Robot. Automat., Washington, DC, 2002, pp.
1531–1538.

[13] H. Mochiyama, E. Shimemura, and H. Kobayashi, “Control of manip-
ulators with hyper degrees of freedom: shape tracking using only joint
angle information,” International Journal of Systems Science, vol. 30,
no. 1, pp. 77–85, 1999.

[14] F. L. Lewis, S. Jagannathan, and A. Yesildirek, Neural Network

Control of Robot Manipulators and Nonlinear Systems. London:
Taylor and Francis, June 1999.

[15] B. Xian, D. M. Dawson, and M. S. de. Queiroz, A Continuous Asymp-

totic Tracking Control Strategy for Uncertain Nonlinear Systems: In

Optimal Control, Stabilization, and Nonsmooth Analysis, ser. Lecture
Notes in Control and Information Sciences. Heidelberg, Germany:
Springer-Verlag, 2004, vol. 301, pp. 251–264.

[16] C. Kwan, F. L. Lewis, and D. M. Dawson, “Robust neural-network
control of rigid-link electrically driven robots,” IEEE Trans. Neural
Networks, vol. 9, no. 4, pp. 581–588, July 1998.

[17] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot
controller with guaranteed tracking performance,” IEEE Trans. Neural

Networks, vol. 7, no. 2, pp. 388–399, Mar. 1996.
[18] H. D. Patino, R. Carelli, and B. R. Kuchen, “Neural networks for ad-

vanced control of robot manipulators,” IEEE Trans. Neural Networks,
vol. 13, no. 2, pp. 343–354, Mar. 2002.

[19] B. A. Jones and I. D. Walker, “Kinematics for multisection continuum
robots,” vol. 22, no. 1, pp. 43–55, Feb. 2006.

[20] I. Gravagne, C. Rahn, and I. Walker, “Large deflection dynamics and
control for planar continuum robots,” IEEE/ASME Trans. Mechatron.,
vol. 8, no. 2, pp. 299–307, June 2003.

[21] H. Mochiyama and T. Suzuki, “Kinematics and dynamics of a cable-
like hyper-flexible manipulator,” in Proc. IEEE Int. Conf. Robot.
Automat., Taipei, Taiwan, 2003, pp. 3672–3677.

[22] ——, “Dynamic modeling of a hyper-flexible manipulator,” in Proc.

41st SICE Annual Conference, Osaka, Japan, 2002, pp. 1505–1510.
[23] D. Braganza, M. McIntyre, D. M. Dawson, and I. Walker,

“Whole arm grasping control for redundant robot manipulators,”
Clemson University, CRB Technical Report CU/CRB/10/12/05/#1,
http://www.ces.clemson.edu/ece/crb/publictn/tr.htm, Oct. 2005.

[24] Y. Nakamura, Advanced Robotics Redundancy and Optimization.
Reading, MA: Addison-Wesley, 1991.

[25] P. Li and R. Horowitz, “Passive velocity field control of mechanical
manipulators,” IEEE Trans. Robot. Automat., vol. 15, no. 4, pp. 751–
763, 1999.

[26] I. Cervantes, R. Kelly, J. Alvarez-Ramirez, and J. Moreno, “A robust
velocity field control,” IEEE Trans. Contr. Syst. Technol., vol. 10, no. 6,
pp. 888–894, 2002.

[27] W. McMahan, B. Jones, I. Walker, V. Chitrakaran, A. Seshadri, and
D. Dawson, “Robotic manipulators inspired by cephalopod limbs,”
in CDEN Symposium on Biomimicry, Bionics and Biomechanics,
Montreal, Canada, 2004, pp. 1–10.

[28] W. McMahan, V. Chitrakaran, M. Csencsits, D. M. Dawson, I. D.
Walker, B. Jones, M. Pritts, D. Dienno, M. Grissom, and C. Rahn,
“Field trials and testing of the octarm continuum manipulator,” in Proc.
IEEE Int. Conf. Robot. Automat., Orlando, FL, 2006, to appear.

[29] M. B. Pritts and C. D. Rahn, “Design of an artificial muscle continuum
robot,” in Proc. IEEE Int. Conf. Robot. Automat., New Orleans, LA,
USA, 2004, pp. 4742–4746.

[30] M. Loffler, N. Costescu, and D. M. Dawson, “Qmotor 3.0 and
the qmotor robotic toolkit - an advanced pc-based real-time control
platform,” IEEE Control Syst. Mag., vol. 22, no. 3, pp. 12–26, June
2002.

APPENDIX

EXPERIMENTAL FIGURES

0 20 40 60
20

25

30

35
Section 1 : Actuator 1

[c
m

]

0 20 40 60
20

25

30

35
Section 1 : Actuator 2

[c
m

]

0 20 40 60
20

25

30

35

[c
m

]

Section 1 : Actuator 3

0 20 40 60
20

25

30

35
Section 2 : Actuator 1

[c
m

]

0 20 40 60
20

25

30

35
Section 2 : Actuator 2

[c
m

]

0 20 40 60
20

25

30

35

[c
m

]

Section 2 : Actuator 3

0 20 40 60
25

30

35

40
Section 3 : Actuator 1

[c
m

]

Time [sec]
0 20 40 60

25

30

35

40
Section 3 : Actuator 2

[c
m

]

Time [sec]
0 20 40 60

25

30

35

40

[c
m

]

Time [sec]

Section 3 : Actuator 3

Fig. 3: Actual and desired joint trajectory without neural network component, solid line represents the actual joint trajectory,

dashed line represents the desired joint trajectory.

0 20 40 60
−2

−1

0

1

2
Section 1 : Actuator 1

[c
m

]

0 20 40 60
−2

−1

0

1

2
Section 1 : Actuator 2

[c
m

]

0 20 40 60
−2

−1

0

1

[c
m

]

Section 1 : Actuator 3

0 20 40 60
−2

0

2

4
Section 2 : Actuator 1

[c
m

]

0 20 40 60
−2

−1

0

1

2
Section 2 : Actuator 2

[c
m

]

0 20 40 60
−4

−2

0

2

[c
m

]

Section 2 : Actuator 3

0 20 40 60
−1

0

1

2
Section 3 : Actuator 1

[c
m

]

Time [sec]
0 20 40 60

−2

−1

0

1
Section 3 : Actuator 2

[c
m

]

Time [sec]
0 20 40 60

−2

−1

0

1

2

[c
m

]

Time [sec]

Section 3 : Actuator 3

Fig. 4: Tracking error without neural network component.

0 20 40 60
0

50

100

150
Section 1 : Actuator 1

[p
s
i]

0 20 40 60
0

50

100

150
Section 1 : Actuator 2

[p
s
i]

0 20 40 60
0

20

40

60

80

[p
s
i]

Section 1 : Actuator 3

0 20 40 60
0

50

100
Section 2 : Actuator 1

[p
s
i]

0 20 40 60
0

50

100
Section 2 : Actuator 2

[p
s
i]

0 20 40 60
0

20

40

60

[p
s
i]

Section 2 : Actuator 3

0 20 40 60
0

50

100
Section 3 : Actuator 1

[p
s
i]

Time [sec]
0 20 40 60

0

50

100
Section 3 : Actuator 2

[p
s
i]

Time [sec]
0 20 40 60

0

50

100

[p
s
i]

Time [sec]

Section 3 : Actuator 3

Fig. 5: Control pressure without neural network component.

0 20 40 60
20

25

30

35
Section 1 : Actuator 1

[c
m

]

0 20 40 60
20

25

30

35
Section 1 : Actuator 2

[c
m

]

0 20 40 60
20

25

30

35

[c
m

]

Section 1 : Actuator 3

0 20 40 60
20

25

30

35
Section 2 : Actuator 1

[c
m

]

0 20 40 60
20

25

30

35
Section 2 : Actuator 2

[c
m

]

0 20 40 60
20

25

30

35

[c
m

]

Section 2 : Actuator 3

0 20 40 60
25

30

35

40
Section 3 : Actuator 1

[c
m

]

Time [sec]
0 20 40 60

25

30

35

40
Section 3 : Actuator 2

[c
m

]

Time [sec]
0 20 40 60

25

30

35

40

[c
m

]

Time [sec]

Section 3 : Actuator 3

Fig. 6: Actual and desired joint trajectory with neural network component, solid line represents the actual joint trajectory,

dashed line represents the desired joint trajectory.

0 20 40 60
−1

0

1

2
Section 1 : Actuator 1

[c
m

]
0 20 40 60

−1

0

1

2
Section 1 : Actuator 2

[c
m

]

0 20 40 60
−2

−1

0

1

[c
m

]

Section 1 : Actuator 3

0 20 40 60
−1

0

1

2
Section 2 : Actuator 1

[c
m

]

0 20 40 60
−1

0

1

2
Section 2 : Actuator 2

[c
m

]

0 20 40 60
−4

−2

0

2

[c
m

]

Section 2 : Actuator 3

0 20 40 60
−2

−1

0

1

2
Section 3 : Actuator 1

[c
m

]

Time [sec]
0 20 40 60

−1

−0.5

0

0.5

1
Section 3 : Actuator 2

[c
m

]

Time [sec]
0 20 40 60

−1

−0.5

0

0.5

1

[c
m

]

Time [sec]

Section 3 : Actuator 3

Fig. 7: Tracking error with neural network component.

0 20 40 60
0

50

100

150
Section 1 : Actuator 1

[p
s
i]

0 20 40 60
0

50

100

150
Section 1 : Actuator 2

[p
s
i]

0 20 40 60
0

50

100

[p
s
i]

Section 1 : Actuator 3

0 20 40 60
0

50

100
Section 2 : Actuator 1

[p
s
i]

0 20 40 60
0

50

100
Section 2 : Actuator 2

[p
s
i]

0 20 40 60
0

20

40

60

[p
s
i]

Section 2 : Actuator 3

0 20 40 60
0

50

100
Section 3 : Actuator 1

[p
s
i]

Time [sec]
0 20 40 60

0

50

100
Section 3 : Actuator 2

[p
s
i]

Time [sec]
0 20 40 60

0

50

100

[p
s
i]

Time [sec]

Section 3 : Actuator 3

Fig. 8: Control pressure with neural network component.

